
International Journal of Pharmaceutics, 17 (1983) 193-201 193 
Elsevier 

Mathematical expression of tablet dissolution 
profiles 

J.R. Leary * and S.D. Ross  ** 

• Revlon Health Care (U.K.) Ltd., Shalfora~ Surrey and ** Deoartment of Chemistry, Chelsea College, 
University of London, London (U.K.) 

(Received March 24th, 1983) 
(Accepted May 15th, 1983) 

Summary 

The process of tablet dissolution may adequately be expressed in terms of two 
consecutive stages, the first having a time-dependent rate, and the second being a 
simple first-order process. By utilizing tables of first and second differences, the rate 
constants of these processes may easily be determined from dissolution profiles. The 
practical use of the method is discussed. 

Introduction 

In a previous work (Leary et al., 1983), tables of first and second differences have 
been used to determine the rate constants of various consecutive zero-order and 
first-order processes. Earlier workers have considered that the process of drug 
dissolution from a tablet matri:, is best represented by one of two mechanisms: 

/ r l  -~ ,M 

A ~ B--* C ~ P A ~  B ~ P (1,2) 

where A, B, C and P represent tablets, large particles or aggregates, small particles or 
fines, and solution, respectively. Rakowski (1906) solved the differential equations 
which result from mechanism 1 if all processes along the main stem are first-order, 
and processes off the main stem are considered to have negligible effect. He arrived 
at the following equation for the final product: 

[P] = 1 k'~ k'(abe-k,t + k'l'klcae-kit klk'lbce- ki't (3) 

where the reaction scheme is A --* B ---, C ---, P with first-order rate constants kl, k'l, 
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k'(, respectively; a, b, and c are (k' 1 - kl), (k~' - kl), and (k'l' - k'l), respectively, and 
[A] at time zero is unity. 

Leary et al. (1983) compared the results generated by using this scheme with 
results obtained by using mechanism 2 with first-order rate constants k I and k~, 
respectively. If the third process of the first scheme is fast relative to the other two 
processes, then reducing the mechanism to a two-stage pro..~s~ still gives an adequate 
fit to the experimental data. 

Goldsmith et al. (1978) have examined the use of Weibull, logarithmic-logistic, 
and logarithmic-normal plots in modelling dissolution data. They concluded that, 
although all of these methods provide reasonable representations of dissolution 
traces, the additional work involved in fitting the parameters to the data does not 
lead to any fresh information. They comment that the most useful result of such 
treatment is to provide a short description of the dissolution rate curves; but that 
this description can equally well be provided by the times at which specified 
fractions of the tablet are in solution. 

We now go on to consider other possible mathematical models for tablet 
dissolution. 

Methods and Results 

Table 1 presents simulated data for 3 mechanisms. The first mechanism is that of 
3 consecutive first-order processes. The rate constants given are in approximately the 
correct ratio to simulate the dissolution process: initial break-up of tablet into 
aggregates is relatively slow, but is followed by faster stages which are the produc- 
tion of fine particles, and their eventual dissolution. ThE formation of P, which is the 
amount of drug in solution, is given by Eqn. 3. The second mechanism is that of two 
consecutive first-order processes (2); for this mechanism, the expression for P is: 

1 
P =  1 + k , -  k - - - -~ l  "(k'l e - k ' t - - k '  e-k~') ( 4 )  

The third mechanism is an extension of the second, and can be represented as: 

A ~ B - , P  (s) 

This is a reasonable mechanism to examine, as we can consider that some drug 
will be dissolving directly from the tablet surface while the tablet itself is breaking 
down into granules, This surface dissolution will obviously be slow compared with 
the dissolution of the granules, as the granules will have a much larger surface area. 
The 3 differential equations for this process may be integrated to give: 

[ P ] = I -  1 ,, . ((k,1 _ k,() e_,k, .k .,t _ k, e_k;, ) (6) 
k~ - k 1 - k I 

We can see quite clearly from Table 1 that. firstly, there is little advantage gained in 
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t (min) IPh IPI2 IPh  

0 0 0 0 
2 0.016 0.017 0.019 
4 0.056 0.058 0.062 
6 O.llO 0.113 0.118 
8 0.170 0.174 0.180 

10 0.233 0.236 0,243 
12 0.295 0.299 0,306 
14 0.355 0.358 0,366 
16 0.412 0.415 0.423 
18 0.465 0.467 0.476 
20 0.513 0.516 0.525 
22 0.558 0.560 0.569 
24 0.599 0.601 0.610 
26 0.637 0.639 0.647 
28 0.671 0.672 0.681 
30 0.702 0.703 0.712 
32 0.730 0.731 0.740 
34 0.756 0.757 0.765 
36 0.779 0.780 0.787 
38 0.800 0.801 0.808 
40 0.819 0.820 0.827 

[Ph = [P] from 3 consecutive first-order processes; k i = 0.05 r a in -  1 k~ = 0.2 ra in-  I. k~' - 10 m i n -  I. 
[P]2 = [P1 f rom 2 consecutive first-order processes; k I = 0.05 r a in - i ,  k~ = 0.2 ra in-  I. 
[P]3 = [P] f rom 2 eottsecutive first-order processes in parallel with one first-order process; k I = 0.05 
min - I, k~ = 0.2 rain - 1 k'{ = 0.001 rain - i. 

using the third stage in a scheme such as 1, and, similarly, there is little gained by 
including the direct dissolution of the tablet into solution as in mechanism [5]. 

The two rate constants of Eqn. 4 are obtainable from tables of the first and 
second forward differences of the raw data (Leary et al., 1983). The curve thus 
generated will show a point of inflection, at which time d2[P]/dt 2 will be zero, 
leading to the relationship: 

k I e -k't~ = k~ e - k l t '  

where t, is the time at the point of inflection. This can be substituted into the 
expression for d[P]/dt,  giving: 

O [ P ]  - k , , ,  , ok ,, 
dt = k l e  = k  l e -  (7) 

These two equations may be solved by graphical or other means to yield values for 
kj and k~. 
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Fig. 1. Examples of dissolution traces genera)ed by two first-order processes. 
k i = 0.05 min -1, k~ = 2.00 min-~;  

..... , k 1 =1.00 rain - t ,  k] =0 .50  m i n - "  

. . . . . .  , k t = 0.05 r a i n - t  k] = 0.10 rain-1;  
. . . . . .  , k l = l . O 0  min -~. k ] = 2 . 0 0  r a in - l ;  

! _ , k l = O . 2 O m i n - t ,  k l - O . 5 O m i n  - I .  

Fig. 1 presents curves which have been generated from Eqn. 4, and shows the 
effect of different values for k t and k~. It can be seen that, in all of these curves, the 
portion of the trace before the point  of inflection does not show the same type of 
curvature as is seen in most dissolution traces. These curves in fact only resemble 
dissolution curves of tablets which can be said to disintegrate very quickly. 

Fig. 2 shows dissolution traces of tolbutamide 500 mg tablets B.P. ( 'Pramidex'  
tablets, Berk Pharmaceuticals). The traces were generated using the method of 
Randall and Goldsmith (1975); the dissolution medium was 1 litre of phosphate  
buffer at pH 7.5, and the amount  of drug in solution was monitored at 228 nm. 

Amount o~ 

tablet 

dissolved 

1.0 

Z. 5 

0.~ 
0 5 1 0  15 20 

Time in minutes. 

Fig. 2. Two dissolution traces of tolbutarnide tablets: these data are presented in Table 3. 



197 

These traces are representative of the dissolution traces shown by a variety of generic 
drugs; particularly in respect of the degree of curvature of the first part of the trace. 
However, the model described above cannot be applied, as F.qn. 7 has no roots for 
the data from these points of inflection. This agrees with the observation above: 
wifich is that this model generates traces which resemble those from rapidly 
disintegrating tablets, but that it is not appropriate for the majority of dissolutton 
profiles seen. Consequently we can conclude that an expression such as Eqn. 3 is not 
an adequate explanation for, or model of, the dissolution process for all types of 
tablet. 

The initial processes of tablet dissolution 
If the process of tablet dissolution is ac:ually observed in a suitable apparatus, we 

can see that, for a short period, very little appears to happen to the tablet. After a 
while the tablet starts to disintegrate into granules, and this process can usually be 
seen to accelerate until a time is reached when the tablet has apparently lost its 
original form. Consequently, the first process of tablet dissolution must be repre- 
sented by a reaction yielding a curve such as that in Fig. 3. Three schemes giving 
curves of the required shape are: 

d[A] 
dt= -k([A]°-[A]) (8) 

d[A] k 
d- -V = -  [A---] (9) 

d[A] 
dt = - k t  (10) 

Eqn. 8 relates the rate of disappearance of tablet to the amount of tablet which 
has dissolved. It is somewhat difficult to use; the reaction apparently never starts, as 
the initial rate of disappearance of [A] is zero. Eqn. 9 can be interpreted as the rate 

Amount  oF 
t = h l e t  

remainln 9 

D l e e o l u t l o n  t i m e  

Fig. 3, A graphical representation of the physical process of a tablet dissolving. 
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Fig. 4. Some examples of dissolution traces generated by the proposed equations. 
k = 0,05 rain -2, k I = 2.00 min-I; 

. . . . .  , k =1.00 rain -2, k~ =0.50 min-I; 
. . . . . .  , k = 0.05 min- 2 kl = 0.10 min- ~; 
. . . . . .  . k =l.00 rain -2, kl =2.00 rain-t; 

k = 0.20 min -2, k I = 0.50 min -1. 

25 

of  disappearance of  the tablet being inversely proport ional  to the amoun t  of  tablet 
remaining. Using this mechanism leads to complex integrations if combined  with 
other  processes. Eqn. 10 shows that the rate of  disappearance of  tablet increases 
linearly with time; and combining this first stage with other processes yields 
relatively simple expressions for the amount  of  tablet in solution. As the purpose  of  
this work is to provide a simple, yet adequate,  model  of  the dissolution process,  we 
shall now consider the application of  Eqn. 10 to tablet dissolution. The use of  this 
equation also permits the determinat ion of  rate constants  from forward differences. 

We may now represent the process of  tablet dissolution by mechanism 2, with the 
first process being time dependent  as in Eqn. 10, and the second process being 
first-order. Integration of these differential equat ions gives: 

[P] = - -  ( k , t +  - 1 )  

This equation holds until t = t e = (2/k) t/2, after which time [P] is given by: 

(11) 

[P] = 1 - BI, e - k ' z  (12) 

where B L is the concentrat ion of  B at t L ,  and z = t - t t .  
The first and second differentials of these expressions can be used to find k and k I 
from experimental data. From Eqn, 11: 

dIPl  - k t -  k 
dt ~-~((1 - e -~'' ) (13) 

d2[P]  = k ( l - e  -k ' ' )  (14) 
dt 2 
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and from Eqn. 12: 

d[P] k,, 
dt = kIBL e -  (15) 

d2[P] 
dt 2 

~ - - - -  - -  k l - B L  e - k ' ~  (16) 

By inspection of Eqns. 14 and 16, the second differential changes sign at time t t. 
and hence k can be found as k = 2 / t  L. At any time after t L. using Eqns. 12 and 15: 

(17) 

Table 2 shows the treatment of simulated data for this reaction scheme. The first and 
second forward differences have been used to regenerate the rate constants, k and 

T A B L E  2 

T H E  M E T H O D  O F  F O R W A R D  D I F F E R E N C E S  A P P L I E D  T O  A 2-STAGE PROCESS  W H E R E  

T H E  F I R S T  S T A G E  HAS t ,  T I M E - D E P E N D E N T  R A T E  

t (min)  [P] First  diff. Second diff. [P],~l, Percent  e r ror  

0 0 
0.002 

1 0.002 0.008 0.002 0.0 
0.010 

2 0.012 0.017 0.012 0.0 
0.027 

3 0.039 0.022 0.038 O. 1 
0.049 

4 0.088 0.028 0.085 0.3 
0.077 

5 O. 165 0.032 O. 159 0.6 
0.109 

6 0.274 0.019 0.264 1.0 
0.128 

7 0.402 - 0.021 0.393 0.9 
0,109 

8 0.511 - 0.019 0.505 0.6 
0.088 

9 0.599 - 0.015 0.596 0.3 
! 0 0.672 0.073 - 0.013 0.670 0.2 

0.060 
11 C,.732 - 0 . 0 1 2  0.731 0.1 

0.048 
12 0.780 - 0.008 0.780 0.0 
13 0.820 0.040 - 0.007 0.821 0.1 

0.033 
14 0.853 - 0.007 0.853 0.0 

0.026 
15 0.879 - O.OIM 0,880 0.1 

0.022 
16 O.qO 1 - 0.004 0.902 O. 1 
17 0.919 0.018 - 0.0~3 0.920 0.1 

18 0.934 0.015 - 0.003 0.935 O. 1 
19 0.946 0.012 - 0.002 0.947 0.1 
20 0.956 0.010 - 0.002 0.957 O.l 
21 0.964 0.008 - 0.002 0.965 0.1 

~ 0.970 0.006 0.971 O.I 

The  co lumn [Pl has  been calculated using k ffi 0.05 min 2, kt ffi 0.2 m i n - t .  From the change  in sign of  the 
second forward difference, t L =6 .475  min,  hence k = 2 /6 .475"  = 0.0477 min -2. At  13 min,  which is 
twice the t ime at the point  of inflection, the first forward difference (by interpolat ion)  is 0.0365 r a i n -  i 
and ( 1 - [ P ] )  is 0.180. F rom these, k I = 0 .0365/0 .180 ffi 0.203 min  I .  The  co lumn [Pl~,k gives the values 

which result when  these values of k t and  k~ are subst i tuted in to  the original equat ion.  
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k t, in the manner indicated in the preceding paragraph; and recalculated values for 
the amount of tablet dissolved are compared with the original values. 

It is worth considering the usefulness of a 3-stage reaction scheme incorporating a 
time-dependent rate for the first stage. The rate constants for the 3 stages can be 
denoted by k, k 1, k~. It is only possible to regenerate these rate constants from 
experimental data if the assumption is made that k~ >> k t. If this is so, then the 
addition of the third stage has very little effect on the final trace. However, if the 
assumption is not valid, the rate constants cannot be regenerated in this manner 
from the experimental data. Hence in either case, inclusion of a third stage in the 
reaction mechanism is not of value in finding a simple, yet adequate, model of the 
dissolution process. 

Table 3 shows this treatment applied to the dissolution traces given in Fig. 2. For 
each trace, the recalculated values for the fractions of tablet dissolved agree well 
with the observed values; the difference between them is never greater than 3% of 

TABLE 3 

DISSOLUTION DATA TAKEN FROM THE TRACES IN FIG. 2 

t First trace Second trace 

(min) [P! First Second [Plcalc % [P] [P]c~lc % 

diff. diff. error error 

0 0.000 0.000 0.000 0.0 
0.008 

1 0.008 0.058 0.009 0.1 0.007 0.008 0.1 
0.066 

2 0.074 0.092 0.067 0.7 0.047 0.062 1.5 
0.158 

3 0.232 0.001 0.214 1.8 0.203 0.197 0.6 
0.159 

4 0.391 - 0.014 0.400 0.9 0.363 0.381 1.8 
0.145 

5 0.536 0.109 - 0 . 0 3 6  0.542 0.6 0.507 0.524 1.7 
6 0.645 - 0.026 0.650 0.5 0.624 0.634 1.0 

0.083 
7 0.728 -0 .018  0.733 0.5 0.705 0.719 1.4 

0.065 
8 0.793 - 0.022 0.796 0.3 0.766 0.784 1.8 

0.043 
9 0.836 0.035 - 0 . 0 0 8  0.844 0.8 0.810 0.834 2.4 

10 0.871 - 0.011 0.881 10  0.849 0.872 2.3 
0.024 

! 1 0.895 - 0.003 0.909 1.4 0.878 0.902 2.4 
0.021 

12 0.916 0.019 - 0 . 0 0 2  0.931 1.5 0.899 0.924 2.5 
13 0.935 0.018 - 0.001 0.947 1.2 0.916 0.942 2.6 

14 0.953 0.018 - 0.000 0.960 0.7 0.929 0.955 2.6 

15 0.971 0.013 - 0.005 0.969 0.2 0.946 0.966 2.0 

16 0.984 0.008 -0 .005  0.976 0.8 0.962 0.974 1.2 
17 0.992 0.000 - 0.008 0.982 1.0 0.972 0.980 0.8 

18 0.992 0.006 0.006 0.986 0.6 0.983 0.984 0.1 

19 0.998 0.002 - 0.004 0.990 0.8 0.992 0.988 0.4 
20 1.000 0.992 0.8 ~l.000 0.991 0.9 

The values [P] are absorbance values from the traces presented in Fig. 1, which have been scaled to the 
value for the absorbance at t = 20 rain. For the first trace, the second forward difference changes sign at 
t = 3.067 min (by interpolation), from which k = 2/3.0672 = 0.213 mi,a -2. At 6 min, which is twice the 
time at the point of inflection, the first forward difference is 0.096 m i n - 1  hence k~ = 0.096/(1 -0 .645)  = 

0.270 min - ] .  In a similar manner, for the second trace, k = 0.200 min -2,  and k 1 = 0.263 min - ] .  The 
values [P]c.lc have been generated from Eqns. 11 and 12 using these values for k and k 1, and the 
percentage error is the difference between [P] and [P]catc, expressed as a percentage of  the complete tablet, 
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the whole tablet. This difference can be caused in two ways, which are as follows. 
The first possibility is that the applied equations are not an adequate model of the 

process. Randall  and Goldsmith (1975) noted a type of trace shown by phenylbuta- 
zone tablets, where the tablet granules, after being released from the tablet matrix, 
remained as whole granules for a further induction period before disintegrating into 
fines and dissolving into solution. The trace thus generated shows 3 points of 
inflection. In general, if the model is not adequate, the differences between the 
observed and calculated values become large and also systematic. 

The second possibility is that although the model is adequate, the rate constants 
have not been extracted accurately from the data. As k is determined only by the 
position along the time axis of the point of inflection, any error in noting this 
position will alter k, and hence the first part of the regenerated curve. This error may 
be minimized by careful selection of the time interval between the data points: if the 
interval is too great, there is only a small number of widely differing values for the 
second forward difference; but if the interval is too small, the second differences 
approach zero, and may fluctuate about zero because of the measurement errors in 
the ordinate. We have found that selecting the time interval in such a way that there 
are 4 or 5 ordinate values before the point of inflection usually gives a satisfactory 
value for k. 

The rate constant k 1 may be determined at any time after the point of inflection, 
and the values determined at different times will normally vary. Several values 
should be determined, and their mean used in the regeneration of the curve; or, 
alternatively, a rule of thumb can be applied--such as determining kl when the time 
is twice that at the point of inflection. 

Conclusion 

A new mathematical model for dissolution traces has been proposed. This model 
is simple to apply, as the two parameters of th~ model may easily be determined 
directly from the experimental data. The regenerated traces have been shown to 
agree closely with the originals. 

Although the parameters of the model are cast in the form of rate constants, there 
is no necessary implication that the process, in truth, takes place according to the 
mechanism proposed: the validity of the parameters as a means toward reproducing 
a dissolution trace is independent of any such assumption. 
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